

Top Level Functional and Performance Requirements

• Topics:

- Requirements Process & Timeline
- Summary of Old Requirements and revisions (11+3)
- New Requirements values/issues/discussion (10)

• Overall Questions:

- Is the requirements list complete?
- Are the values correct, given current knowledge?
- What requirements need to have goals defined (as opposed to the requirement)?

"Old" Requirements I

• Unchanged:

- Spatial Resolution
- Field of View
- Bandpass
- Celestial Coordinate Accuracy
- Sky Coverage
- Observation Durations
- Viewing Efficiency
- Mission Life
- Redundancy
- Reliability (but all values TBD).
- Orbit

"Old" Requirements II

- Modified
 - Effective Area:
 - now defined at 4 energies, adding the requirement of 1,000cm² at 0.3A (TBR)
 - Spectral Resolution:
 - A minimum resolving power of 3000 is specified from 6.0 to 10.0 keV.
 - Reliability
 - now 25% vs. 33%, excludes loss due to LV

New Requirements Summary

- Photometric Accuracy and Stability
 - Absolute
 - Relative
- Spectral Accuracy and Stability
- Bright Source Capability
 - Point Source
 - Extended Source
- Extended Source Capability
- Timing Resolution and Precision
- Targets per Day
- Real Time Observing
- Data Latency
- Data Downlink
- Data Storage

Photometric Accuracy and Stability

• Requirements:

- Absolute: 10% (context: Chandra goal is ~1%)

- Relative: 5%

At any time during the mission.

• Issues:

- Are these the right values?
- Should relative be across entire bandpass (currently), or within an instrument bandpass?
- Do we need better relative accuracy for particular line ratios? If so, can we do this "locally" rather than globally?
- How will this be calibrated?

Spectral Accuracy and Stability

• Requirement:

- <25% of the wavelength (energy) resolution at any time during the mission

• Issues:

- Is this adequate for e.g., the velocity studies that are anticipated. We can centroid a strong line to >10x better than the resolution, but observations at different epochs may be limited by the spectral accuracy.
- Can this be achieved for the current instrument set?
- Is it necessary for all observations, or just "precision" subsets?
- Will impact ground and in-orbit calibrations.
- May impact viewing efficiencies

Bright Source Capability

Point Source Requirement:

 10000 cps (TBR) from 0.2 to 10 keV in a telescope beamwidth for at least one instrument without degrading spectral resolution

Extended Source:

- 10000 cps (TBR) from 0.2 to 10 keV over the field of view

• Issues:

- count rates chosen to allow viewing of all but the bright ~few sources. May be too stringent, and drops quickly if we don't observe ~20 brightest sources.
- May need to specify total allowed durations

Extended Source Capability

• Requirement:

 Capable of obtaining spectra with the previously stated spectral and spatial resolutions from ~1 to 40 keV for sources which are larger in extent than the telescope F.O.V.

• Issues:

 Unless a lower limit bandpass is imposed, this is problematic for the CCD/Grating combination.

Timing Resolution and Precision

• Requirement:

 Individual photon events shall be time tagged with a resolution of +/- 40 microseconds, and a precision of 100 (TBR) microseconds relative to UT time

• Issues:

- ?

Targets per Day

• Requirement:

- 5 per day
- Selected to ensure that a significant number of sources could be observed during the early operations phase

• Issues:

- ?

• Note:

 With an addition assumption regarding the duration of the observations, can yield a constraint on the s/c slew rates & settling times.

Real Time Observing

• Requirement:

 There is no requirement for real time observing during normal science operations

• Issue:

Some sentiment to make this "never". But initial operations and checkouts probably will require some real time contacts and possibly observing, but not necessarily "science" observing.

Data Latency

- Definition:
 - Time from completion of an observation to the time level 1 science data is "in hand" by the PI
- Requirement:
 - 72 hours
- Issues:
 - Chosen almost arbitrarily as a starting position.

Onboard Data Storage

- Requirement:
 - TBD. Perhaps "Adequate to store up to 2 days of continuous observing"
- Current Planned Capability
 - 9.1 Gb
- Issue:
 - May not really be a top level requirement.
 - If we specify as above, need to consider how bright the sources are, etc.

Data Downlink

- Requirement:
 - TBD. Maybe "Adequate to downlink 24 hours of observing per 8 hour ground contact"
- Current Planned Capability:
 - 1.7Mbs
- Issues:
 - May not be a top level requirement.
 - May need to specify whether its "typical" observing

Detector Backgrounds

- Requirement:
 - No current values
- Issues:
 - Highly instrument dependent
 - Open for discussion